a2 United States Patent

US009218435B2

(10) Patent No.: US 9,218,435 B2

Buttner et al. (45) Date of Patent: Dec. 22, 2015
(54) DYNAMICALLY UPDATING WEB PAGES (56) References Cited
USING MESSAGING-ORIENTED
MIDDLEWARE U.S. PATENT DOCUMENTS
6,239,797 B1* 5/2001 Hillsetal. ..o 715/784
(75) Inventors: Gerard John Buttner, Stony Point, NY 6,823,350 Bl 11/2004 Héiasﬁingeld etal.
(US); Chitra Dorai, Chappaqua, NY 7,107,543 B2* 9/2006 Berryetal. 715/749
(US)' Ahmad-Sameh Afif Fakhouri 2002/0032701 Al1* 3/2002 Gaoetal. 707/513
N ,R helle. NY (US): Daniel A. ’ 2002/0165907 Al* 11/2002 Dornquast et al. ... 709/203
ew Rochelle, NY (US); Daniel A, 2004/0139475 AL* 72004 ZENONi ..oroorverro . 725/113
Gisolfi, Hopewell, NY (US); Jianren Li, 2004/0267781 AL* 12/2004 Smolgovsky etal. 707/100
Valhalla, NY (US) 2005/0108418 Al* 5/2005 Bedietal. ..o 709/232
2005/0119913 Al 6/2005 Hornreich et al.
s . . . 2006/0031282 Al 2/2006 Tuttle et al.
(73) Assignee: IC“ter“at‘t‘f“alz“s‘“;;sgI;cg‘;‘es 5007/0100844 A1 52007 Buttner et al.
orporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: SUbjeCt. to any diSCIaimer{ the term of this Burns et al., Java Server Specification Version 1.2, Nov. 2004, Sun
patent is extended or adjusted under 35 Microsystems, pp. 1-408.*
U.8.C. 154(b) by 1380 days. Ponzo et al., “ON Demand Web-Client Technologies”, Jul. 2004,
IBM Systems Journal, vol. 43, No. 2, pp. 297-315.
(21) Appl. No.: 12/127,167 Office Action, dated Apr. 3, 2008, regarding U.S. Appl. No.
11/261,016, 6 pages.
(22) Filed: May 27, 2008 Final Office Action, dated Oct. 10, 2008, regarding U.S. Appl. No.
11/261,016, 7 pages.
(65) Prior Publication Data . .
* cited by examiner
US 2008/0263179 Al Oct. 23, 2008
Primary Examiner — Jorge A Casanova
(74) Attorney, Agent, or Firm — Yee & Associates, P.C.;
Related U.S. Application Data Louis J. Percello
(63) Continuation of application No. 11/261,016, filed on 7 ABSTRACT
Oct. 28, 2005, now abandoned. System, computer implemented method and computer pro-
gram product for dynamically updating a Web page using
(51) Int.CL browser-based messaging. A system for dynamically updat-
GOGF 17/30 (2006.01) ing a Web page using browser-based messaging includes a
(52) U.S.CL Web page that includes a plurality of Web messaging tags, and
1S SR GOGF 17/30899 (2013.01) @selected datamodel that can be bound to the Web messaging
(58) Field of Classification Search tags, and at least one messaging client for accepting at least
CPC GOGF 17/30899 one message from a message server and for processing the
USPC 707/613 accepted at least one message into the selected data model.

See application file for complete search history.

20 Claims, 3 Drawing Sheets

700

FIG. 7

702~ PROVIDE WEB PAGE |

!

704\| SELECT MESSAGING CLIENT TYPE |

!

706\| ESTABLISH CONNECTION |

!

708~y suBsCRBETOTOPICS |

!

ACCEPT MESSAGES FROM
7107 MESSAGE SERVER

b

712 | PROCESS MESSAGES ACCEPTED |

!

714-- UPDATE INTO DATAMODEL |

U.S. Patent Dec. 22, 2015 Sheet 1 of 3 US 9,218,435 B2

[_L
=

100

106~ '
] FIG. 1

=

allla—
|

ERVER
S | 110
104~
CLIENT
=
L= | 112
SERVER
CLIENT
IP-114
108 CLIENT
200
206~ Processing | FIG. 2 y
UNIT
210 202 208 216 236
N N / / /
GRAPHICS MAIN AUDIO
PROCESSOR (W] NB/MCH K= \ievory apAPTER | | 51O
204
240 N 238
BUS BUS
W 7 | ll/ I T
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK [|CD-ROM | ApAPTER gg:.Erg pevices | | mouse || VIOPEM | | ROM
ADAPTER
/ / / / \ \ \ \

226 230 212 232 234 220 222 224

U.S. Patent Dec. 22, 2015 Sheet 2 of 3 US 9,218,435 B2
FIG. 3 306
5 SERVES STATIC BROWSER 304 302
WEB CONTENT CLIENTS) "
SERVER OBF-ENABLED
WEB PAGE
SERVES DYNAMIC WEB
MESSAGING UPDATES MESSAGING [~_308
PUBLISHER 1 ™ srrveR g CONTROL
/ /
312 310 590/
:5]2
406 SERVES BROWSER 404
HG. 4 400 \ STATIC CLIENTS
. WEB | CONTENT OBF-ENABLED 408
SERVER
WEBPAGE
WEB MESSAGING
429 SERVES
S DYNAMIC CONTROL
UPDATES JAVASCRIPT
PUBLISHER [WEBGD\"TEESV%\E'NG > LBRARY 420
MESSAGING SERVER
/ /
112 410
'5/02
FIG. 5 506 SERVES BROWSER 504
\ STATIC CLENTS
WEB CONTENT
500 - OBF-ENABLED 5Q8
e SERVER WEBPAGE
SERVES WEB MESSAGING CONTROL
MESSAGING DYNAMIC
PUBLISHER | UPDATES APPLET, JAVA AND
SERVER > JAVASCRIPT LIBRARY [530
/ /
512 510

U.S. Patent Dec. 22, 2015 Sheet 3 of 3 US 9,218,435 B2
600~ JSF TOOLING
602~] WEBMESSAGING
JSF TAGS
604~] WEBMESSAGING
JAVA EMITTER
T FIG. 6
606~ OBF WEBMESSAGING HTML ANNOTATION |~ 620
CONTROL JAVASCRIPT JAVASCRIPT
WEBMESSAGING CONNECTION
608 COMMON JAVASCRIPT CLASS
WEBMESSAGING WEBMESSAGING
610~ APPLET JAVASGRIPT [N612
A WBI EVENT BROKER WHITEWATER |
FIG. 7
702~ PROVIDE WEB PAGE
704~ SELECT MESSAGING CLIENT TYPE
706~ ESTABLISH CONNECTION
708~ SUBSCRIBE TO TOPICS
ACCEPT MESSAGES FROM

71071 MESSAGE SERVER
719~ PROCESS MESSAGES ACCEPTED

!

714

UPDATE INTO DATA MODEL

US 9,218,435 B2

1
DYNAMICALLY UPDATING WEB PAGES
USING MESSAGING-ORIENTED
MIDDLEWARE

This application is a continuation of application Ser. No.
11/261,016, filed Oct. 28, 2005, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the data process-
ing field, and more particularly, to a system, computer imple-
mented method and computer program product for dynami-
cally updating a Web page using browser-based messaging.

2. Description of the Related Art

The Web has created an incredible growth environment by
making business applications easy to deploy, manage and
access. As a result, the Web has replaced the client-server
model fairly quickly. Based on open standards such as Java™,
J2EE™ (Java™ 2 Platform Enterprise Edition), HTTP (Hy-
per Text Transfer Protocol), HTML (Hyper Text Markup
Language) and JavaScript™, and the ubiquitous browser;
enterprises are able to open up their “backends” and create an
environment where employees and customers can readily
access a variety of applications from any location at any time.

On the other hand, however, the Web has created a user
experience that is considered to be a step backward from what
existed in the client-server world. There, clients enjoyed arbi-
trary richness as provided by the hosting GUI (Graphical User
Interface)-based operating system such as Microsoft® Win-
dows®. Although Web interfaces can be made very graphical,
the actual interactivity model is very restrictive. The percep-
tible performance gap and full screen refreshes between most
interactions with the user, for instance, remain an important
issue. ActiveX™ controls and the like attempt to remedy this
in various ways but have failed to gain ubiquitous usage
because of issues relating to the development model, security,
performance and compatibility. Only Web pages with HTML,,
DHTML (Dynamic HTML), CSS (Cascading Style Sheets)
and JavaScript™ have remained ubiquitous and widely used.
Java™ applets to some extent can perform many tasks on
browsers despite the difficulty of accommodating the variety
of'browsers with different JVMs (Java™ Virtual Machines) in
use on the Internet as well as security restrictions.

The On-Demand Client Browser Framework (OBF) is a
software framework which implements browser-based Ser-
vice Data Objects (SDO), a Java™ standard model using
JavaScript™, and includes a set of JavaScript™ Ul widgets as
well as a small server-side Java™ library for streaming data.
The OBF tries to address many of the interactivity issues
raised by the Web, but remains rooted in the traditional Web
page architecture.

Based on an advanced usage of JavaScript in modern
browsers such as IE 5.5 and above, Netscape® 6 and above,
and Mozilla™ 1.x, the OBF seeks to create “Web pages that
last longer”. Composed with a dynamic model that packs
more data, OBF enabled Web pages are able to sustain longer
interactions with an end user without requiring roundtrips
back to the server. By creating what effectively is an MVC
(Model View Controller) model inside the page, a developer
is able to define a working data set and a set of controls that
dynamically bind to that data. Thus, the same data object can
be shared among different widgets on the same page.

Consider, for example, a Web application for managing a
user’s stock portfolio. In this example, stock prices as well as
asset allocation (percentage of the value of a particular stock
in the total portfolio, i.e., price*shares/total value) needs to be

10

15

20

25

30

35

40

45

50

55

60

65

2

displayed for users. A scrollable table display of data (some-
times referred to as a DataGrid) can be used to display asset
allocation (stock issue, volume) for example, and the current
price for a particular stock; and a pie chart can also be used to
display the same information to a user. This data can be shared
by the DataGrid and the pie chart at the same time. When any
data object in the model is updated, the binding component in
the OBF will notify the user interface objects, which are
bound to the data object, to refresh themselves to reflect the
latest changes. The user can then interact with the working
data set, using the set of controls, and until a roundtrip back to
the server is really necessary (e.g., to submit data, complete a
transaction, etc.), the user benefits from response times and a
freedom to interact with the page that is uncommon in regular
Web pages.

While the OBF is able to cache a certain amount of data
inside its data model on the Web page at the time of initial
page loading, and can greatly improve the usability (interac-
tivity and responsiveness) of Web pages, the data set that can
be cached is still limited due to client computer memory
constraints and incurred initial network delay from down-
loading a large data set. In addition, OBF-enabled Web pages
lack an intrinsic facility for keeping the Data Objects current
while they are on the user’s screen. The above-described Web
application of a stock portfolio is a good example of this. In
this case, stock prices are changing with time and the Web
pages have to be updated to keep up with the changes. In a
standard Web application, data on a Web page can only be
updated if the entire page is re-retrieved from the server. This
is inefficient in that it requires a round trip of a request-
response pair for each data refresh, and also loses any updates
the user may have made on a different part of the same page.

In the OBF, one way of updating data in the model is made
possible by using a browser-based WebService control. How-
ever, a user has to initiate a WebService call to update a data
page by clicking a button or hyperlink on a Web page. It
essentially is a pull-based model which requires user actively
seeking the data and refreshing the Web page often.

A competitor of the OBF is AJAX. AJAX stands for Asyn-
chronous JavaScript™ and XML (Extensible Markup Lan-
guage), a term describing a Web development approach to
creating interactive Web applications using a combination of
technologies:

HTML, or XHTML (Extensible HTML), and CSS for

information presentation

The Document Object Model manipulated through JavaS-

cript™ to dynamically display and interact with the
information presented

The XMLHttpRequest object to retrieve data asynchro-

nously from the Web server on the background.

The technologies used by AJAX have been available since
1997, however, several recent high-profile offerings from
Google™ are AJAX applications, including Gmail™,
Google™ Maps, Google™ Groups, etc. This has helped raise
the profile of the technique and has made AJAX more popular
among Internet developers.

Related to AJAX, a known solution of browser-based mes-
saging is provided by ActiveMQ™ through its REST API
(Application Program Interface). ActiveMQ™ is an open
source JMS 1.1 provider and messaging middleware. AJAX
support in ActiveMQ™ builds on top of the REST connector
for ActiveMQ™, which allows Web capable devices to send
or receive messages over JMS (Java™ Message Service).

Although OBF and AJAX share the same goals towards
improving the usability of Web applications and use many of
the same technologies (such as JavaScript™, HTML DOM
(Document Object Model), CSS, etc.), there are considerable

US 9,218,435 B2

3

differences between them. OBF is well-architected using an
MVC model on Web pages, as described above, with the
model bound to widgets, thus allowing data sharing among
widgets. By doing so, there is a clean separation between the
data model and widgets. Any data update from the Web server
is always made against the model. The model can be bound to
any widget. With tooling help, Web page development using
OBF can be made very flexible and easy to drag and drop. In
contrast, there is no formal MVC model in AJAX, which uses
XML as its data storage. The Web messaging of ActiveMQ™
uses XmlHttpRequest to make calls on the REST API to send
and receive messages, and then an AJAX JavaScript™ library
will manipulate the messages for presentation without involv-
ing a data model.

There is, accordingly, a need for a system and computer
implemented method for dynamically updating a Web page
using browser-based messaging to improve the usability and
interactivity of Web applications.

SUMMARY OF THE INVENTION

The present invention provides a system, computer imple-
mented method and computer program product for dynami-
cally updating a Web page using browser-based messaging. A
system for dynamically updating a Web page using browser-
based messaging comprises a Web page that includes a plu-
rality of Web messaging tags, and a selected data model that
can be bound to the Web messaging tags, and at least one
messaging client for accepting at least one message from a
message server and for processing the accepted at least one
message into the selected data model.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 depicts a pictorial representation of a network of
data processing systems in which aspects of the present
invention may be implemented;

FIG. 2 depicts a block diagram of a data processing system
in which aspects of the present invention may be imple-
mented;

FIG. 3 is a block diagram that schematically illustrates a
Web Messaging architecture according to an exemplary
embodiment of the present invention;

FIG. 4 is a block diagram that schematically illustrates a
JavaScript™ Web Messaging implementation of the Web
Messaging architecture illustrated in FIG. 3 according to an
exemplary embodiment of the present invention;

FIG. 5 is a block diagram that schematically illustrates a
Java™ Applet Web Messaging implementation of the Web
Messaging architecture illustrated in FIG. 3 according to an
exemplary embodiment of the present invention;

FIG. 6 is a diagram that schematically illustrates interac-
tion between various components and layers of a Web Mes-
saging control according to an exemplary embodiment of the
present invention; and

FIG. 7 is a flowchart that illustrates a method for dynami-
cally updating a Web page according to an exemplary
embodiment of the present invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIGS. 1-2 are provided as exemplary diagrams of data
processing environments in which embodiments of the
present invention may be implemented. It should be appreci-
ated that FIGS. 1-2 are only exemplary and are not intended to
assert or imply any limitation with regard to the environments
in which aspects or embodiments of the present invention
may be implemented. Many modifications to the depicted
environments may be made without departing from the spirit
and scope of the present invention.

With reference now to the figures, FI1G. 1 depicts a pictorial
representation of a network of data processing systems in
which aspects of the present invention may be implemented.
Network data processing system 100 is a network of comput-
ers in which embodiments of the present invention may be
implemented. Network data processing system 100 contains
network 102, which is the medium used to provide commu-
nications links between various devices and computers con-
nected together within network data processing system 100.
Network 102 may include connections, such as wire, wireless
communication links, or fiber optic cables.

Inthe depicted example, server 104 and server 106 connect
to network 102 along with storage unit 108. In addition,
clients 110, 112, and 114 connect to network 102. These
clients 110, 112, and 114 may be, for example, personal
computers or network computers. In the depicted example,
server 104 provides data, such as boot files, operating system
images, and applications to clients 110, 112, and 114. Clients
110, 112, and 114 are clients to server 104 in this example.
Network data processing system 100 may include additional
servers, clients, and other devices not shown. Specifically,
clients may connect to any member of a network of servers
which provide equivalent content.

In the depicted example, network data processing system
100 is the Internet with network 102 representing a world-
wide collection of networks and gateways that use the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols to communicate with one another. At the heart of
the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, government, educational and other
computer systems that route data and messages. Of course,
network data processing system 100 also may be imple-
mented as a number of different types of networks, such as for
example, an intranet, a local area network (LAN), or a wide
area network (WAN). FIG. 1 is intended as an example, and
not as an architectural limitation for different embodiments of
the present invention.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which aspects of the present
invention may be implemented. Data processing system 200
is an example of a computer, such as server 104 or client 110
in FIG. 1, in which computer usable code or instructions
implementing the processes for embodiments of the present
invention may be located.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (MCH) 202 and south bridge and
input/output (I/0) controller hub (ICH) 204. Processing unit
206, main memory 208, and graphics processor 210 are con-
nected to north bridge and memory controller hub 202.
Graphics processor 210 may be connected to north bridge and
memory controller hub 202 through an accelerated graphics
port (AGP).

US 9,218,435 B2

5

In the depicted example, local area network (LAN) adapter
212 connects to south bridge and I/O controller hub 204.
Audio adapter 216, keyboard and mouse adapter 220, modem
222, read only memory (ROM) 224, hard disk drive (HDD)
226, CD-ROM drive 230, universal serial bus (USB) ports
and other communications ports 232, and PCI/PCle devices
234 connect to south bridge and I/O controller hub 204
through bus 238 and bus 240. PCI/PCle devices may include,
for example, Ethernet adapters, add-in cards and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash binary
input/output system (BIOS).

Hard disk drive 226 and CD-ROM drive 230 connect to
south bridge and I/O controller hub 204 through bus 240.
Hard disk drive 226 and CD-ROM drive 230 may use, for
example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super [/O
(SI0) device 236 may be connected to south bridge and 1/0
controller hub 204.

An operating system runs on processing unit 206 and coor-
dinates and provides control of various components within
data processing system 200 in FIG. 2. As a client, the oper-
ating system may be a commercially available operating sys-
tem such as Microsoft® Windows® XP (Microsoft® and
Windows® are trademarks of Microsoft Corporation in the
United States, other countries, or both). An object-oriented
programming system, such as the Java™ programming sys-
tem, may run in conjunction with the operating system and
provides calls to the operating system from Java™ programs
or applications executing on data processing system 200
(Java™ is a trademark of Sun Microsystems, Inc. in the
United States, other countries, or both).

As a server, data processing system 200 may be, for
example, an IBM® eServer pSeries® computer system, run-
ning the Advanced Interactive Executive (AIX®) operating
system or LINUX® operating system (eServer, pSeries® and
AIX® are trademarks of International Business Machines
Corporation in the United States, other countries, or both
while Linux® is a trademark of Linus Torvalds in the United
States, other countries, or both). Data processing system 200
may be a symmetric multiprocessor (SMP) system including
aplurality of processors in processing unit 206. Alternatively,
a single processor system may be employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as hard disk drive 226, and
may be loaded into main memory 208 for execution by pro-
cessing unit 206. The processes for embodiments of the
present invention are performed by processing unit 206 using
computer usable program code, which may be located in a
memory such as, for example, main memory 208, read only
memory 224, or in one or more peripheral devices 226 and
230.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-2 may vary depending on the implemen-
tation. Other internal hardware or peripheral devices, such as
flash memory, equivalent non-volatile memory, or optical
disk drives and the like, may be used in addition to or in place
of the hardware depicted in FIGS. 1-2. Also, the processes of
the present invention may be applied to a multiprocessor data
processing system.

In some illustrative examples, data processing system 200
may be a personal digital assistant (PDA), which is config-
ured with flash memory to provide non-volatile memory for
storing operating system files and/or user-generated data.

A bus system may be comprised of one or more buses, such
as bus 238 or bus 240 as shown in FIG. 2. Of course the bus

10

15

20

25

30

35

40

45

50

55

60

65

6

system may be implemented using any type of communica-
tions fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communications unit may include one or
more devices used to transmit and receive data, such as
modem 222 or network adapter 212 of FIG. 2. A memory may
be, for example, main memory 208, read only memory 224, or
a cache such as found in north bridge and memory controller
hub 202 in FIG. 2. The depicted examples in FIGS. 1-2 and
above-described examples are not meant to imply architec-
tural limitations. For example, data processing system 200
also may be a tablet computer, laptop computer, or telephone
device in addition to taking the form of a PDA.

The present invention is directed to a system, computer
implemented method and computer program product for
dynamically updating a Web page using browser-based mes-
saging in order to improve the usability and interactivity of
Web applications. According to an exemplary embodiment of
the present invention, Web page content is dynamically
updated with On Demand Client Browser Framework (OBF)
enabled Web pages. More particularly, On Demand Client
(ODC)-enabled Web page data models are updated using a
new technique, referred to as “Web Messaging”, that reduces
round trips to a Web server by employing a publish/subscribe
message broker to push updates to a client.

Real time update of data that changes often in a page is
more efficient via push mode than an entire page refresh, and
also allows for the preservation of local user changes and is
more user friendly than updating via Web Service. Web Mes-
saging is an extension of the publish/subscribe messaging
system and employs a different paradigm from that of Web
Service. The publish/subscribe messaging model is a push-
based model where messages are automatically broadcast to
users, for example, as Web pages, without the users having to
issue requests for new messages.

According to an exemplary embodiment of the present
invention, a Web Messaging control, comprising several JSF
(Java™ Server Faces) tags, enables end users to access pub-
lish/subscribe messaging systems from Web browsers, and
allows data on Web pages to be dynamically updated. JSF is
auser interface (UI) framework for Java™ Web applications,
and a new J2EE Standard. JSF is designed to significantly
ease the burden of writing and maintaining Java™ Web appli-
cations, and includes a set of controls, including common
Web controls (command button, input text, radio button, etc.)
and extended controls (Data table, TabbedPanel, RichText,
FileUpload) and related infrastructure. These JSF tags for
Web Messaging can be deployed on a Web page using JSF
tooling and allows a Web developer to configure the control
(specifying messaging server port number, message topic and
attributes, etc.), wherein the JSF tags include a set of Java™
programs for generating necessary JavaScript™ and HTML
code as well as JavaScript™ library includes on Web pages.

According to a further exemplary embodiment of the
invention, a computer program product stored on a computer
usable medium is provided that will update the OBF model on
a Web page by pushing real time information from a messag-
ing system. The messaging data will then be rendered using
JSF UI controls (such as DataGrid and InputText, etc.). This
cleanly separates the population of a data model from render-
ing the data on a ISP (JavaServer™ Pages).

According to a further exemplary embodiment of the
invention, a message published on a Messaging server is
transported to a Web page, processed and the model updated
onthe page, which eventually will cause Ul widgets to refresh
themselves due to binding and will allow end users to see data
changes in the Web application. As will be explained more

US 9,218,435 B2

7

fully hereinafter, two flavors of Web Messaging implementa-
tions are supported according to exemplary embodiments of
the invention, including Java™ Applet and JavaScript™ Web
messaging clients.

According to yet another exemplary embodiment of the
present invention, a method is provided for deploying an
application that allows data to be dynamically updated on a
Web page. The method includes providing a computer infra-
structure operable to update a data model on a Web page that
can generate necessary HTML and JavaScript™ code, and
that includes JavaScript™ library or Java™ Applet, wherein
JavaScript™ or Java™ Applet code can transport a message
published on a messaging server to a Web page, process the
message and update the model on the page, which will even-
tually cause the Ul widgets to refresh themselves due to
binding.

As was briefly discussed above, the OBF is able to cache a
certain amount of data inside its data model on a Web page at
the time of initial page loading, and can greatly improve the
usability (interactivity and responsiveness) of Web pages.
OBF-enabled Web pages, however, lack an intrinsic facility
for keeping Data Objects current while they are on a user’s
screen. In the exemplary Web application of a stock portfolio
described previously, stock prices change with time and the
Web pages have to be updated in order to keep up with the
changes.

FIG. 3 is a block diagram that schematically illustrates a
Web Messaging architecture according to an exemplary
embodiment of the present invention. In particular, FIG. 3 is
a high level diagram that illustrates the interaction of a Web
server, a messaging server and browsers at runtime.

The Web Messaging architecture is generally designated
by reference number 300. An end user at one of browser
clients 302 has requested OBF-enabled Web page 304 which
displays his/her stock portfolio information. As a result, a
Java™ Server Page (JSP) with a data grid showing portfolio
composition with current stock prices, as well as a pie chart
graphically displaying the same information, is downloaded
from Web server 306. At the same time, necessary JavaS-
cript™ code included with Web Messaging control 308 is
generated and downloaded along with the rest of OBF-en-
abled Web page 304. Web Messaging control 308 on OBF-
enabled Web page 304 establishes a connection with Messag-
ing server 310 based on the configuration (port number and
topic, etc.) set up on the page by a Web application developer.

Publisher 312 continuously publishes stock prices through
Messaging server 310. Messaging server 310 broadcasts the
messages to its message clients based on their topic subscrip-
tions, in this case, Web browser clients 302. Web Messaging
control 308 on OBF-enabled Web page 304 processes the
messages and updates the OBF model on the page. Eventu-
ally, the end user will be able to see the stock prices updating
automatically.

According to exemplary embodiments of the present
invention, two flavors of Web Messaging implementations
are provided, namely JavaScript™ and Java™ Applet Web
messaging clients; and a Web developer can choose between
them based on their environment and requirements. A Web
developer, however, will only have to deal with the same set of
JSP tags or HTML tags by setting up slightly different param-
eters on one of the tags. An end user will not readily see the
difference between the two configurations.

FIG. 4 is a block diagram that schematically illustrates a
JavaScript™ Web Messaging implementation of the Web
Messaging architecture illustrated in FIG. 3 according to an
exemplary embodiment of the present invention. The imple-
mentation is generally designated by reference number 400,

30

40

45

8

and uses corresponding reference numbers to identify corre-
sponding components in the architecture illustrated in FIG. 3.
Implementation 400 includes JavaScript™ library 420 on
browser clients 402 maintaining communication with Mes-
saging server 410 via Web Messaging gateway 422 using
HTTP tunneling and issuing HTTP requests and responses
inside HTML iframes.

FIG. 5 is a block diagram that schematically illustrates a
Java™ Applet Web Messaging implementation of the Web
messaging architecture illustrated in FIG. 3 according to an
exemplary embodiment of the present invention. The imple-
mentation is generally designated by reference number 500
and also uses corresponding reference numbers to identify
corresponding components in the architecture illustrated in
FIG. 3. As shown in FIG. 5, there are applet, Java™ Messag-
ing client API and JavaScript™ library 530 on browser clients
502 maintaining communication with Messaging server 510.

FIG. 6 is a diagram that schematically illustrates how vari-
ous components and layers of a Web Messaging control inter-
act with one another according to an exemplary embodiment
of the present invention. On top is JSF tooling 600 which
enables a developer to drag and drop WebMessaging tagsto a
JSP, to bind the control to a model, to set up a message topic,
to map model object attributes with message properties and to
perform other configuration activities. In this layer, the devel-
oper will make a decision regarding which Messaging client
type (JavaScript™ or Java™ Applet) will be used. A flag
(messaging type) will be passed to the layers below. Based on
the Messaging client decision, necessary resources (JavaS-
cript™ files, Jars, zips, etc.) will be copied to the appropriate
directories inside the project.

Immediately below JSF tooling 600 is WebMessaging JSF
tag runtime implementation 602, which is a very thin layer
and delegates most of the rendering work to the layer below it,
namely, WebMessaging Java™ emitter 604. WebMessaging
Java™ emitter 604 exports all necessary JavaScript™ code
for WebMessaging control.

OBF WebMessaging control JavaScript™ layer 606
handles interfacing with the OBF model as well as layers
below. At the startup of a Web page, data in the OBF model is
used to configure message topics, which in turn is used for
message subscription. WebMessaging control is bound with
the OBF model. When any object, whose parent is bound to
the message topic templates, is created or deleted, an event is
fired to add or remove message subscriptions. If any attribute
of'a model object, which is used to make up the message topic
by substituting tokens inside topic templates, is updated, an
eventis also fired to remove the old topic if no more subscrip-
tions exist for the topic, and to add a new message topic if the
topic has not yet been subscribed. This layer also tracks the
relationship between topics and model objects. When a mes-
sage arrives, the right model object(s) will be updated based
on this mapping.

WebMessagingConnection common JavaScript™ inter-
face layer 608 is designed to provide a uniform JavaScript™
interface for Web Messaging regardless of whether the user
decides to use a JavaScript™ or Applet Messaging client type
which is linked to different Messaging servers. Based on the
flag (messaging type) passed down from layers above, this
layer will set up necessary resources. [fthe Applet Messaging
client type is used, an applet will be instantiated here. This
layer can also directly serve the common interface for HTML
annotation JavaScript™ 620 for Web Messaging as shown in
FIG. 6.

At the bottom, based on the flag (messaging type), either
WebMessaging Java™ Applet layer 610 using WebSphere
Business Integration (WBI) Event Broker 614, or WebMes-

US 9,218,435 B2

9

saging JavaScript™ layer 612 using Whitewater messaging
engine 616 is used to connect with backend messaging sys-
tems. These two options will be discussed more fully below.

WebMessaging Java™ Applet 610 supports a set of pub-
lish/subscribe messaging actions to communicate with back-
end WBI Event Broker 614. WebMessaging Java™ Applet
610 enables both a real time update of Web pages with mes-
sages from WBI Event Broker 614 and the publication of
messages to the broker.

WebMessaging Java™ Applet 610 uses a specialized sub-
set of the standard JMS API to maximize the JMS function-
ality that is available while limiting the applet and supporting
class download size to approximately 100 kilobytes. The
messaging support classes are contained in the file “mini-
mal.zip” which is distributed with the applet and is made
available in the application project. Although JMS supports
many types of messages, Web Messaging uses only standard
String JMS message properties for subscriptions. This tech-
nique facilitates mapping of fields within messages to
browser model data or Web page elements.

WebMessaging Java™ Applet 610 only provides a set of
APIs that the JavaScript™ layer above can call, and expects a
callback handler. The callback handler will be a JavaScript™
object, which represents common WebMessaging JavaS-
cript™ interface object 608 above. When a message arrives,
the applet calls the handler so that the OBF model will be
updated.

The overall JavaScript™ client component comprises
essentially two sub-components, a client JavaScript™ library
in WebMessaging JavaScript™ layer 612 and a protocol han-
dler embedded in messaging engine 616. The JavaScript™
client provides the client side functionality required to inter-
act with the server side protocol handler, and, hence, provides
topic-based messaging services to Web applications. The cli-
ent library is supplied in a “.js” file that can be referenced by
an HTML document and processed by a Web browser. The
library includes core messaging functionality (such as con-
nect, send, addConsumers and disconnect), and the ability to
register callback functions such that message event driven
programming can be achieved in the JavaScript™ environ-
ment.

The JavaScript™ messaging client provides the following
benefits:

A “minimal” footprint messaging client (about 30 k) suit-

able for use in the Web domain

Leverage of ubiquitous client technologies such as HTML

and JavaScript™ to minimize requirements on the client
machine other than standard browser environments.

According to an exemplary embodiment of the present
invention, the library also includes optional layer 620 on top
of'the basic messaging API to provide HTML annotation Web
Messaging capability in the client browser. HTML annotation
Web Messaging allows a page developer to directly annotate
HTML elements in a page with topic names such that contents
of'those elements can be populated with message driven data
in the user’s browser client.

FIG. 7 is a flowchart that illustrates a method for dynami-
cally updating a Web page according to an exemplary
embodiment of the present invention. The method is gener-
ally designated by reference number 700, and begins by pro-
viding a Web page that includes Web messaging tags, JavaS-
cript™ and, potentially, a Java™ library, and a selected data
model that can be bound to the Web messaging tags (Step
702). A messaging client type is also selected (Step 704). A
connection is established to a Messaging server (Step 706),
and topics are subscribed to from the Messaging server (Step
708). Published messages relating to the subscribed topics are

20

25

30

40

45

10

then accepted from the Message server (Step 710), the
accepted messages are processed (Step 712), and the mes-
sages are updated into the data model to update the Web page
(Step 714).

It should be appreciated that while exemplary embodi-
ments of the present invention are described herein with ref-
erence to updated Web pages using Web Messaging in an On
Demand Client Browser Framework (OBF) environment, the
techniques described herein could also be applied in other
client-based processes that requires data updating without
departing from the scope of the present invention.

It should also be appreciated that the Web browser, the
OBF-enabled Web page, and the Web Messaging control may
be stored in computer system memory such that the func-
tional components of the OBF-enabled Web page are pro-
vided as a computer program product. The present invention
can also be offered as a method on a subscription or fee basis.
For example, the OBF Web page and the Web Messaging can
be created, maintained, supported and/or deployed by a ser-
vice provider that offers the functions described herein for
customers. That is, a service provider can be used to provide
OBF-enabled Web pages with Web Messaging as described
above.

The present invention thus provides a system, computer
implemented method and computer program product for
dynamically updating a Web page using browser-based mes-
saging. A system for dynamically updating a Web page
according to an exemplary embodiment of the present inven-
tion includes a Web page that includes a plurality of Web
messaging tags, and a selected data model that can be bound
to the Web messaging tags, and at least one messaging client
for accepting at least one message from a message server and
for processing the accepted at least one message into the
selected data model.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any tangible
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

US 9,218,435 B2

11

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.
Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.
The description of the present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.
What is claimed is:
1. A system for dynamically updating a Web page using
browser-based messaging, comprising:
a processor coupled to a memory;
a Web page that includes a plurality of Web messaging tags,
and a selected data model bound to the Web messaging
tags; and
at least one messaging client accepting at least one mes-
sage from a message server and processing the accepted
at least one message into the data model,
wherein responsive to a request for the Web page and
simultaneously with a downloading of the Web page,
computer code included in a web messaging control
component of the web page is generated and down-
loaded along with the Web page, and
wherein the computer code
establishes a connection with the message server based
on a configuration including a port number and a
topic,

transports the at least one message published on the
message server to the Web page,

updates a portion of the data model using the message
and without performing a page refresh, and

updates the Web messaging tags to reflect the updates in
the data model.

2. The system according to claim 1, wherein the plurality of
Web messaging tags comprises a plurality of Web message
tags in at least one of a server-side component that generates
responses and Hyper Text Markup Language.

3. The system according to claim 2, wherein a plurality of
Web messaging tags comprises a plurality of Web messaging
attributes in Hyper Text Markup Language for dynamically
updating data directly into a Document Object Model on the
Web page.

4. The system according to claim 1, wherein the plurality of
Web messaging tags comprises Web messaging tags for con-
figuring a port number of the message server, for selecting a
messaging client type, for binding messaging topic and prop-
erty to the data model on the Web page, and for generating
code for an object-oriented scripting language used to enable
programmatic access to objects within both the client appli-
cation and other applications.

5. The system according to claim 1, wherein the selected
data model comprises an On Demand Client Browser Frame-
work data model.

6. The system according to claim 1, wherein the at least one
messaging client comprises one of a messaging client type

10

15

20

25

35

40

45

50

55

60

65

12

that uses code for an object-oriented scripting language used
to enable programmatic access to objects within both the
client application and other applications and a messaging
client type that uses programs that are embedded in other
applications, in the web page displayed in a web browser for
accepting the at least one message from the message server,
for processing the accepted at least one message, and for
updating the accepted at least one message into the selected
data model.

7. The system according to claim 6, wherein the messaging
client comprises the type that uses programs that are embed-
ded in other applications, in the web page displayed in a web
browser, and wherein the system further comprises libraries
for an object-oriented scripting language used to enable pro-
grammatic access to objects within both the client application
and other applications and a library which programs can call
at runtime for accepting the at least one message from the
message server, for processing the accepted at least one mes-
sage, and for updating the accepted at least one message into
the selected data model.

8. The system according to claim 6, and further comprising
a server-side library for handling communication with the at
least one messaging client.

9. A computer implemented method for dynamically
updating a Web page using browser-based messaging, com-
prising:

providing a Web page that includes a plurality of Web

messaging tags, and a selected data model that can be
bound to the Web messaging tags;

establishing a connection to a message server;

subscribing to at least one topic from the message server;

receiving at least one message relating to the at least one
subscribed topic from the message server; and

updating the received at least one message into the data
model to update the Web page, wherein, responsive to a
request for the Web page and simultaneously with a
downloading of the Web page, computer code included
in a web messaging control component of the web page
is generated and downloaded along with the Web page,
and wherein the computer code establishes a connection
with the message server based on a configuration includ-
ing a port number and a topic, transports the at least one
message published on the message server to the Web
page, updates a portion of the data model using the
message and without performing a page refresh, and
updates the Web messaging tags to reflect the updates in
the data model.

10. The computer implemented method according to claim
9, wherein providing a Web page that includes a plurality of
Web Messaging tags and a selected data model that can be
bound to the Web messaging tags, comprises:

providing a plurality of Web messaging tags in at least one

of a server-side component that generates responses and
Hyper Text Markup Language.

11. The computer implemented method according to claim
9, wherein providing a Web page that includes a plurality of
Web Messaging tags and a selected data model that can be
bound to the Web messaging tags, comprises:

providing a plurality of Web messaging tags for configur-

ing a port number of the message server, for selecting a
messaging client type, for binding messaging topic and
property to the data model on the Web page, and for
generating code for an object-oriented scripting lan-
guage used to enable programmatic access to objects
within both the client application and other applications.

US 9,218,435 B2

13

12. The computer implemented method according to claim
9, wherein the selected data model comprises an On Demand
Client Browser Framework data model.

13. The computer implemented method according to claim
9, and further comprising:

selecting a messaging client of one of a messaging client

type that uses code for an object-oriented scripting lan-
guage used to enable programmatic access to objects
within both the client application and other applications
and a messaging client type that uses programs that are
embedded in other applications, in the web page dis-
played in a web browser for accepting the at least one
message from the message server, for processing the
accepted at least one message, and for updating the
accepted at least one message into the selected data
model.

14. The computer implemented method according to claim
13, wherein selecting a messaging client of one of a messag-
ing client type that uses code for an object-oriented scripting
language used to enable programmatic access to objects
within both the client application and other applications and a
messaging client type that uses programs that are embedded
in other applications, in the web page displayed in a web
browser comprises selecting a messaging client of a messag-
ing client type that uses programs that are embedded in other
applications, in the web page displayed in a web browser, and
wherein the method further comprises:

providing libraries for an object-oriented scripting lan-

guage used to enable programmatic access to objects
within both the client application and other applications
and a library which programs can call at runtime for
accepting the at least one message from the message
server, for processing the accepted at least one message,
and for updating the accepted at least one message into
the selected data model.

15. The computer implemented method according to claim
9, and further comprising:

providing a server-side library for handling communica-

tion with the at least one messaging client.

16. A computer program product comprising:

one or more non-transitory computer readable storage

devices;

computer usable program code stored in the one or more

computer readable storage devices for dynamically
updating a Web page using browser-based messaging,
the computer program product comprising:

computer usable program code stored in the one or more

computer readable storage devices for providing a Web
page that includes a plurality of Web messaging tags,
and a selected data model that can be bound to the Web
messaging tags;

computer usable program code stored in the one or more

computer readable storage devices for establishing a
connection to a message server;

computer usable program code stored in the one or more

computer readable storage devices for subscribing to at
least one topic from the message server;

computer usable program code stored in the one or more

computer readable storage devices for receiving at least
one message relating to the at least one subscribed topic
from the message server; and

computer usable program code stored in the one or more

computer readable storage devices for updating the
received at least one message into the data model to

10

15

20

25

30

35

40

45

50

55

60

14

update the Web page, wherein, responsive to a request
for the Web page and simultaneously with a download-
ing of the Web page, computer code included in a web
messaging control component of the web page is gener-
ated and downloaded along with the Web page, and
wherein the computer code establishes a connection
with the message server based on a configuration includ-
ing a port number and a topic, transports the at least one
message published on the message server to the Web
page, updates a portion of the data model using the
message and without performing a page refresh, and
updates the Web messaging tags to reflect the updates in
the data model.

17. The computer program product according to claim 16,
wherein the computer usable program code for providing a
Web page that includes a plurality of Web messaging tags, and
a selected data model that can be bound to the Web messaging
tags, comprises:

computer usable program code for providing the plurality

of Web messaging tags in one of a server-side compo-
nent that generates responses or Hyper Text Markup
Language.

18. The computer program product according to claim 16,
wherein the computer program code for providing a Web page
that includes a plurality of Web Messaging tags, and a
selected data model that can be bound to the Web messaging
tags, comprises:

computer usable program code for providing a plurality of

Web messaging tags for configuring a port number of the
message server, for selecting a messaging client type, for
binding messaging topic and property to the data model
on the Web page and for generating code for an object-
oriented scripting language used to enable program-
matic access to objects within both the client application
and other applications.

19. The computer program product according to claim 16,
and further comprising:

computer program code for selecting a messaging client

type of one of a type that uses an object-oriented script-
ing language used to enable programmatic access to
objects within both the client application and other
applications and a type that uses programs that are
embedded in other applications, in the web page dis-
played in a web browser, for accepting the at least one
message from the message server, for processing the
accepted at least one message, and for updating the
accepted at least one message into the selected data
model.

20. A computer implemented method for dynamically
updating a Web page, comprising:

providing a computer infrastructure configured to:

serve a Web page that includes a plurality of Web mes-
saging tags, and an On Demand Client Browser
Framework model which can be bound to the plurality
of Web messaging tags; and

publishing at least one message for broadcast to at least one

Web messaging client that has subscribed to at least one
message topic, wherein the Web page establishes a con-
nection with the message server, transports the at least
one message published on the message server to the Web
page, updates the data model on the Web page, and
updates the Web messaging tags to reflect the updates in
the data model.

